summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_page_bitmap.h
blob: 0ff98773260320497fb9a723f5384355dac3ebbf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#pragma once

#include <array>
#include <bit>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/tiny_mt.h"
#include "core/hle/kernel/k_system_control.h"

namespace Kernel {

class KPageBitmap {
public:
    class RandomBitGenerator {
    public:
        RandomBitGenerator() {
            m_rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64()));
        }

        u64 SelectRandomBit(u64 bitmap) {
            u64 selected = 0;

            for (size_t cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2; cur_num_bits != 0;
                 cur_num_bits /= 2) {
                const u64 high = (bitmap >> cur_num_bits);
                const u64 low = (bitmap & (~(UINT64_C(0xFFFFFFFFFFFFFFFF) << cur_num_bits)));

                // Choose high if we have high and (don't have low or select high randomly).
                if (high && (low == 0 || this->GenerateRandomBit())) {
                    bitmap = high;
                    selected += cur_num_bits;
                } else {
                    bitmap = low;
                    selected += 0;
                }
            }

            return selected;
        }

        u64 GenerateRandom(u64 max) {
            // Determine the number of bits we need.
            const u64 bits_needed = 1 + (Common::BitSize<decltype(max)>() - std::countl_zero(max));

            // Generate a random value of the desired bitwidth.
            const u64 rnd = this->GenerateRandomBits(static_cast<u32>(bits_needed));

            // Adjust the value to be in range.
            return rnd - ((rnd / max) * max);
        }

    private:
        void RefreshEntropy() {
            m_entropy = m_rng.GenerateRandomU32();
            m_bits_available = static_cast<u32>(Common::BitSize<decltype(m_entropy)>());
        }

        bool GenerateRandomBit() {
            if (m_bits_available == 0) {
                this->RefreshEntropy();
            }

            const bool rnd_bit = (m_entropy & 1) != 0;
            m_entropy >>= 1;
            --m_bits_available;
            return rnd_bit;
        }

        u64 GenerateRandomBits(u32 num_bits) {
            u64 result = 0;

            // Iteratively add random bits to our result.
            while (num_bits > 0) {
                // Ensure we have random bits to take from.
                if (m_bits_available == 0) {
                    this->RefreshEntropy();
                }

                // Determine how many bits to take this round.
                const auto cur_bits = std::min(num_bits, m_bits_available);

                // Generate mask for our current bits.
                const u64 mask = (static_cast<u64>(1) << cur_bits) - 1;

                // Add bits to output from our entropy.
                result <<= cur_bits;
                result |= (m_entropy & mask);

                // Remove bits from our entropy.
                m_entropy >>= cur_bits;
                m_bits_available -= cur_bits;

                // Advance.
                num_bits -= cur_bits;
            }

            return result;
        }

    private:
        Common::TinyMT m_rng;
        u32 m_entropy{};
        u32 m_bits_available{};
    };

public:
    static constexpr size_t MaxDepth = 4;

public:
    KPageBitmap() = default;

    constexpr size_t GetNumBits() const {
        return m_num_bits;
    }
    constexpr s32 GetHighestDepthIndex() const {
        return static_cast<s32>(m_used_depths) - 1;
    }

    u64* Initialize(u64* storage, size_t size) {
        // Initially, everything is un-set.
        m_num_bits = 0;

        // Calculate the needed bitmap depth.
        m_used_depths = static_cast<size_t>(GetRequiredDepth(size));
        ASSERT(m_used_depths <= MaxDepth);

        // Set the bitmap pointers.
        for (s32 depth = this->GetHighestDepthIndex(); depth >= 0; depth--) {
            m_bit_storages[depth] = storage;
            size = Common::AlignUp(size, Common::BitSize<u64>()) / Common::BitSize<u64>();
            storage += size;
            m_end_storages[depth] = storage;
        }

        return storage;
    }

    s64 FindFreeBlock(bool random) {
        uintptr_t offset = 0;
        s32 depth = 0;

        if (random) {
            do {
                const u64 v = m_bit_storages[depth][offset];
                if (v == 0) {
                    // If depth is bigger than zero, then a previous level indicated a block was
                    // free.
                    ASSERT(depth == 0);
                    return -1;
                }
                offset = offset * Common::BitSize<u64>() + m_rng.SelectRandomBit(v);
                ++depth;
            } while (depth < static_cast<s32>(m_used_depths));
        } else {
            do {
                const u64 v = m_bit_storages[depth][offset];
                if (v == 0) {
                    // If depth is bigger than zero, then a previous level indicated a block was
                    // free.
                    ASSERT(depth == 0);
                    return -1;
                }
                offset = offset * Common::BitSize<u64>() + std::countr_zero(v);
                ++depth;
            } while (depth < static_cast<s32>(m_used_depths));
        }

        return static_cast<s64>(offset);
    }

    s64 FindFreeRange(size_t count) {
        // Check that it is possible to find a range.
        const u64* const storage_start = m_bit_storages[m_used_depths - 1];
        const u64* const storage_end = m_end_storages[m_used_depths - 1];

        // If we don't have a storage to iterate (or want more blocks than fit in a single storage),
        // we can't find a free range.
        if (!(storage_start < storage_end && count <= Common::BitSize<u64>())) {
            return -1;
        }

        // Walk the storages to select a random free range.
        const size_t options_per_storage = std::max<size_t>(Common::BitSize<u64>() / count, 1);
        const size_t num_entries = std::max<size_t>(storage_end - storage_start, 1);

        const u64 free_mask = (static_cast<u64>(1) << count) - 1;

        size_t num_valid_options = 0;
        s64 chosen_offset = -1;
        for (size_t storage_index = 0; storage_index < num_entries; ++storage_index) {
            u64 storage = storage_start[storage_index];
            for (size_t option = 0; option < options_per_storage; ++option) {
                if ((storage & free_mask) == free_mask) {
                    // We've found a new valid option.
                    ++num_valid_options;

                    // Select the Kth valid option with probability 1/K. This leads to an overall
                    // uniform distribution.
                    if (num_valid_options == 1 || m_rng.GenerateRandom(num_valid_options) == 0) {
                        // This is our first option, so select it.
                        chosen_offset = storage_index * Common::BitSize<u64>() + option * count;
                    }
                }
                storage >>= count;
            }
        }

        // Return the random offset we chose.*/
        return chosen_offset;
    }

    void SetBit(size_t offset) {
        this->SetBit(this->GetHighestDepthIndex(), offset);
        m_num_bits++;
    }

    void ClearBit(size_t offset) {
        this->ClearBit(this->GetHighestDepthIndex(), offset);
        m_num_bits--;
    }

    bool ClearRange(size_t offset, size_t count) {
        s32 depth = this->GetHighestDepthIndex();
        u64* bits = m_bit_storages[depth];
        size_t bit_ind = offset / Common::BitSize<u64>();
        if (count < Common::BitSize<u64>()) [[likely]] {
            const size_t shift = offset % Common::BitSize<u64>();
            ASSERT(shift + count <= Common::BitSize<u64>());
            // Check that all the bits are set.
            const u64 mask = ((u64(1) << count) - 1) << shift;
            u64 v = bits[bit_ind];
            if ((v & mask) != mask) {
                return false;
            }

            // Clear the bits.
            v &= ~mask;
            bits[bit_ind] = v;
            if (v == 0) {
                this->ClearBit(depth - 1, bit_ind);
            }
        } else {
            ASSERT(offset % Common::BitSize<u64>() == 0);
            ASSERT(count % Common::BitSize<u64>() == 0);
            // Check that all the bits are set.
            size_t remaining = count;
            size_t i = 0;
            do {
                if (bits[bit_ind + i++] != ~u64(0)) {
                    return false;
                }
                remaining -= Common::BitSize<u64>();
            } while (remaining > 0);

            // Clear the bits.
            remaining = count;
            i = 0;
            do {
                bits[bit_ind + i] = 0;
                this->ClearBit(depth - 1, bit_ind + i);
                i++;
                remaining -= Common::BitSize<u64>();
            } while (remaining > 0);
        }

        m_num_bits -= count;
        return true;
    }

private:
    void SetBit(s32 depth, size_t offset) {
        while (depth >= 0) {
            size_t ind = offset / Common::BitSize<u64>();
            size_t which = offset % Common::BitSize<u64>();
            const u64 mask = u64(1) << which;

            u64* bit = std::addressof(m_bit_storages[depth][ind]);
            u64 v = *bit;
            ASSERT((v & mask) == 0);
            *bit = v | mask;
            if (v) {
                break;
            }
            offset = ind;
            depth--;
        }
    }

    void ClearBit(s32 depth, size_t offset) {
        while (depth >= 0) {
            size_t ind = offset / Common::BitSize<u64>();
            size_t which = offset % Common::BitSize<u64>();
            const u64 mask = u64(1) << which;

            u64* bit = std::addressof(m_bit_storages[depth][ind]);
            u64 v = *bit;
            ASSERT((v & mask) != 0);
            v &= ~mask;
            *bit = v;
            if (v) {
                break;
            }
            offset = ind;
            depth--;
        }
    }

private:
    static constexpr s32 GetRequiredDepth(size_t region_size) {
        s32 depth = 0;
        while (true) {
            region_size /= Common::BitSize<u64>();
            depth++;
            if (region_size == 0) {
                return depth;
            }
        }
    }

public:
    static constexpr size_t CalculateManagementOverheadSize(size_t region_size) {
        size_t overhead_bits = 0;
        for (s32 depth = GetRequiredDepth(region_size) - 1; depth >= 0; depth--) {
            region_size =
                Common::AlignUp(region_size, Common::BitSize<u64>()) / Common::BitSize<u64>();
            overhead_bits += region_size;
        }
        return overhead_bits * sizeof(u64);
    }

private:
    std::array<u64*, MaxDepth> m_bit_storages{};
    std::array<u64*, MaxDepth> m_end_storages{};
    RandomBitGenerator m_rng;
    size_t m_num_bits{};
    size_t m_used_depths{};
};

} // namespace Kernel